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Abstract: Alzheimer’s disease (AD) is a late-life cognitive disorder associated, among other things, to the presence of ex-

tracellular aggregates of fibrillar amyloid beta protein (A ). However, there is growing evidence that early stages of AD 

may be due to neuronal network dysfunction produced by the actions of soluble forms of A . Therefore, the development 

of new therapeutic strategies to treat AD, at least during its first stages, may be focused on preventing or reversing, the 

deleterious effects that soluble A  exerts on neuronal circuit function. In order to do so, it is necessary to elucidate the 

pathophysiological processes involved in A -induced neuronal network dysfunction and the molecular processes underly-

ing such dysfunction. Over the last decades, there has been extensive research about the molecular mechanisms involved 

in the effects of A  as well as possible neuroprotective strategies against such effects. Here we are going to review some 

of the intracellular pathways triggered by A , which involve membrane receptors such as nicotinic-R, NMDA-R, in-

tegrins, TNF-R1, RAGE, FPRL and p75NTR and their intracellular mediators such as GSK3, PKC, PI3K, Akt, FAK, 

MAPK family, Src family and cdk5. Several of these pathways may constitute therapeutic targets for the treatment of the 

A -induced neuronal network dysfunction which is, at least in part, the basis for cognitive dysfunction in AD. 

Key Words: Alzheimer’s disease, A -signaling pathways, neuronal network dysfunction, A -related receptors and pharmacol-
ogical targets. 

INTRODUCTION 

 Alzheimer's disease (AD), the most common of the late-
life dementias, frequently begins after the age of 60 years 
and its prevalence rises exponentially with age, reaching 
more than 40% of people over 85 [1]. Symptomatically, AD 
is characterized by a progressive impairment in cognitive 
function [2-5] whereas histopathologically, AD is character-
ized by the presence of extracellular aggregates of fibrillar 
amyloid beta protein (A ) [4, 6] and intracellular aggregates 
of hyperphosporylated Tau-protein [7, 8]. Up to date, there is 
increasing evidence indicating that early soluble forms of 
A , rather than late fibrillar conformations, might interfere 
with normal neuronal network function and consequently 
lead to the early deficits in learning and memory observed in 
AD patients [5, 9, 10] as well as in transgenic AD animal 
models, long before any neurodegeneration is observed [5, 
11-15].  

 The A  is a 39-43 amino acid peptide cleavage product 
derived from the amyloid precursor protein (APP) [4, 16, 
17], which is generated by the sequential processing of two 
proteases, -secretase and -secretase, through the amyloi-
dogenic pathway. Alternatively APP can be processed by -
secretase, which precludes the formation of A  in the 
nonamyloidogenic pathway [18].  

 A -induced dysfunction seems to be associated to neu-
ronal network alterations both at the physiological and bio- 
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chemical levels, and involves a complex mixture of effects 
on neurons and glia [5, 19]. Altogether, the deleterious ef-
fects of A  on neuronal networks may affect cognitive-
related processes such as long term potentiation (LTP) in
vivo and in vitro [15, 20-27], neuronal network oscillations 
in vivo and in vitro [28-30] as well as neuronal codification 
in vivo [31]. These effects might represent the basis for the 
cognitive decline observed, at least, during the early stages 
of AD [15, 20-23, 25-29]. Accordingly with this line of evi-
dence, we have recently shown that acute application of A
affects hippocampal network functioning from single cell to 
network level both in vitro and in vivo [30]. But what is the 
biochemical source of such network dysfunction? 

 Finding the biochemical events involved in A -induced 
neuronal network dysfunction will provide with proper 
therapeutic targets to treat AD, at least during its initial 
phase. This is an important issue due to the fact that there are 
no therapeutic interventions available that halt or reverse AD 
and that the currently approved anti-AD therapies, including 
the cholinesterase inhibitors and the N-methyl-D-aspartic 
acid receptor (NMDA-R) antagonists (for review see [32-
35]), just offer modest symptomatic relief [36]. We believe 
that new therapeutic targets might be revealed through the 
study of the putative A  membrane receptors and the intra-
cellular pathways triggered by A . Here we are going to re-
view the intracellular pathways involved in the generation of 
A -induced neuronal network dysfunction. We are including 
the receptors and the intracellular pathways altered by A  on 
all types of nerve cells, since it is well known that brain 
function is generated by the complex interaction of a neuro-
glial network and since it is very likely that A -induced neu-
ronal network dysfunction is the product of a complex altera-
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tion induced by A  in both neurons and all types of glial 
cells [5, 37, 38]. Finally, it is important to mention that we 
are going to review the receptors and the intracellular path-
ways known to be directly activated or modified by A . In 
almost all the cases the reviewed data refers to the intracellu-
lar pathways activated by acute A  application, however we 
also include few data involving effects produced by long-
lasting A  application, in such cases we indicated that the 
biochemical events were evoked by long-lasting A  applica-
tion. The review of several neuroprotective intracellular 
pathways that might prevent the effects of A , but that are 
not directly activated by such protein, has been previously 

done and are not going to be reviewed here (see [38-41]).  

A -RELATED RECEPTORS AND ITS INTRACEL-

LULAR PATHWAYS  

 As was previously described, A  is a peptide related to 
neurodegeneration and the progressive impairment of cogni-
tive function in AD, therefore a great effort has been done to 
determine if such effects are mediated by putative A  recep-
tors. The literature shows that A  can bind to several types 
of membrane receptors and can activate different signaling 
pathways through them [42, 43]. Such receptors include a) 
Ion channels like NMDA-R and nicotinic receptors (nAChR); 
b) G-protein-coupled receptors such as the formyl-peptide 
receptor-like-1 (FPRL1); c) Adhesion receptors like inte-
grins; d) Cytokines receptors like p75 neurotrophin receptor 
(p75NTR) and tumor necrosis factor receptor 1 (TNF-R1); e) 
Tyrosine kinase receptors like insulin receptors (IR); and f) 
A variety of receptors that share their participation in the 
inmmune response, such as the receptor for advanced glyca-
tion end products (RAGE), scavenger receptor A (SR-A) and 
BI (SR-BI), as well as cluster of differentiation 36 (CD36), 
14 (CD14) and 47 (CD47) [42, 43]. All those reeptors, and 

their interactions with A , will be reviewed next.  

NMDA-R

 One of the major targets for A  seems to be the glutama-
tergic NMDA-R, to which directly binds (Fig. 1) [44]. There 
is overwhelming evidence that NMDA-R play a major role 
in A -induced neurotoxicity and sinaptotoxicity [5, 45-49]. 
Accordingly, A -induced increase of intracellular Ca

2+
 re-

sults from the interaction of A  and NMDA-R (Fig. 1) [50, 
51] and A -induced neurotoxicity is usually reverted by 
NMDA-R antagonists [49, 52]. A recent report indicates that 
those neurons that express NMDA-R with the NR1/NR2A 
subunit composition are more vulnerable to A -induced neu-
rotoxicity [53]. Furthermore a recent report has shown that 
A -induced activation of NMDA receptors requires a tyrosin 

phosphorylation of the NR2B subunit [54].  

 As mentioned, A -induced neuronal death involves the 
activation of NMDA-R. Accordingly, in MES 23.5 neuro-
blastoma cell line, A -induced neuronal death is enhanced in 
Mg

2+
 free media and inhibited in Ca

2+
 free media, as well as 

by the application of 5-methyl-10,11-dihydro-5H-dibenzo 
[a,d]cyclohepten-5,10-imine (MK-801), an NMDA-R an-
tagonist [55]. A -induced, NMDA-mediated, neuronal death 
involves the increase of Ca

2+
-dependent nitric oxide (NO) 

synthesis and the subsequent overproduction of guanosine 
cyclic monophosphate (GMPc) and the radical oxygen spe-

cies (ROS) (Fig. 1) [55]. Beyond the possible direct activa-
tion of NMDA-R by A , a possible indirect activation of the 
same receptor seems to be achieved by the effect of A  on 
microglia. In vitro studies have shown that activation of mi-
croglia by A  produce the secretion of both tumor necrosis 
factor-  (TNF ) and glutamate, as part of the pro-inflam-
matory reaction [56-58]. Both TNF  and glutamate synergis-
tically promote neuronal death trough the activation of TNF 
receptor 1 (TNFR1) and NMDA-R. This conclusion is based 
on the fact that memantine and 2-amino-phosphonovaleric 
acid (APV), both NMDA-R antagonists, as well as soluble 
TNFR1, protects neurons from A -induced neuronal death 
[59]. Related to this finding, it has been observed that, at 
chronic level, cholinergic denervation produced by A  corre-
lates with an increase of NO production, which is mediated 
by Ca

2+
influx via NMDA-R activation. Interestingly, chronic 

exposure to ifenprodil tartrate, which selectively binds to the 
NMDA-R2B subunit, prevented all the described effects [60, 
61]. In contrast to the evidence just reviewed, a recent report 
has shown that prolonged exposure of organotypic hippo-
campal slices to A  dimers and trimers can induce a progres-
sive loss of dendritic spines and a decrease in excitatory syn-
apses. Such effects can be prevent with antibodies against 
A  or with an A  aggregation inhibitor called scyllo-inositol 
(AZD-103) [62]. This A -induced spine loss seems to be 
produced by a reduction of Ca

2+
 influx through NMDA-R, 

since a subsaturating concentration of 3-(2-carboxypiperazin-
4-yl) propyl-1-phosphonic acid (CPP), a NMDA antagonist, 
mimicked A -induced effect [62]. It is important to mention 
that this finding contrast with published literature showing 
the A  activates NMDA-R and induce Ca2+ influx through 
them (Fig. 1) [50, 51]. 

 A  interaction with NMDA is not exclusively related to 
Ca

2+
 influx and neurotoxicity (Fig. 1), it can also induce the 

activation of several transduction pathways that may lead to 
changes in neuronal function before cell death (Fig. 1) [5]. 
Electrophysiological experiments have shown that A  in-
creases NMDA-R dependent, currents [63] or NMDA-
dependent responses [64] and that this potentiation of 
NMDA-currents is involved in the increase of LTP produced 
by A  [65]. A  interaction with NMDA-R, triggers the acti-
vation of different protein kinases such as Src-like kinases 
(including Fyn), Ras, the mitogen-activated protein kinase 
(MAPK) and phosphoinositide 3-kinase (PI3K) (Fig. 1). In 
granule neurons A -induced, NMDA-R-mediated, nuclear 
factor B (NFKB) activation is inhibited by 4-Amino-5-(4-
chlorophe-nyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine (PP2), 
manumycin A, PD98059 and LY294002, inhibitors of the 
mentioned proteins, respectively (Fig. 1) [66]. The activation 
of MAPK by A , through NMDA-R activation, has also 
been observed in hippocampal neurons [67]. Furthermore A
induces Akt phosphorylation through the activation of both 
NMDA and 7nChRs; effect blocked by ifenprodil and 
methyllycaconitine (MLA), both antagonists of the men-
tioned receptors, respectively (Fig. 1) [54]. Altogether the 
evidence reviewed show that blocking the potentiation of 
NMDA-dependent mechanisms produced by A  represents 
an attractive therapeutic target against AD. In fact it might 
constitute the cellular basis for the beneficial clinical effects 
observed with NMDA-R antagonists, being the more suc-
cessful example that of memantine [49, 52, 68, 69]. 
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Nicotinic Receptors 

 The nicotinic receptors (nAChR) are ligand-gated ion 
channels [70-73], consisting of five subunits with eight dif-
ferent  ( 2- 9) subunits and three different  ( 2- 4) com-
ponents [74]. Of these nAChR, 7 and 4 2 are the most 
abundant combinations in the brain [75]. The 7nAChR is 
highly expressed in the hippocampus and the cortex. Those 
brain areas, which are related to memory and cognition, are 
highly innervated by the basal forebrain cholinergic neurons, 
and are the most disturbed brain areas in AD [71, 73, 76-84].  

 Although there are some reports showing that A  acts 
independently of nicotine receptors [4, 85], a great pool of 
evidence has proven that A  can bind nicotine receptors and 
activate intracellular pathways through them (Fig. 1): immu-
nohistochemical studies have shown that A  and 7nAChR 
colocalized on neurons surrounding neuritic plaques in hip-
pocampal and cortical tissues from AD brains [86, 87]. Both 

A  and 7nAChR co-immunoprecipitate when antibodies 
against either A  or 7nAChR are used [86, 87]. Further-
more, binding assays have shown that A  bind with high 
affinity to 7nAChR (Fig. 1) [86, 87]. Whether or not A
acts as an agonist or as an antagonist for 7nAChR remains 
controversial and will be discussed later [88-90]. In relation 
to intracellular signalling, A  interaction with 7nAChR 
activates PI3K, extracellular signal-regulated kinase (ERK) 
and Akt (Fig. 1) [88, 91-93]. Binding of A  to 7nAChR can 
activate ERK2, in a Ca

2+
-dependent manner (Fig. 1). This 

effect is blocked by the 7nAChR antagonists MLA and -
bungarotoxin (BTX) [88]. Related to this finding, it has been 
observed that a transgenic AD mouse model (Tg2576), 
shows an age-dependent increase both in 7nAChR expres-
sion as well as in ERK2 activation in the hippocampus and 
the cortex [88]. A similar effect has been observed using 
organotypic hippocampal slices incubated chronically with 
A  [88]. Chronic exposure to A  also induces changes in the 

Fig. (1). Main receptors and intracellular pathways activated by A  in neurons. Without ignoring other neuronal receptors, A  can bind 

and activate nicotinic-, NMDA- and p75NT receptors in neurons. Activation of such receptors induces both ion movements and biochemical 

cascades. A major component of the response to A  in neurons is a raise in intracellular calcium through the nicotinic and the NMDA recep-

tors. It is important to mention that such receptors activate several biochemical pathways as well. Both receptors, along with p75NTR, share 

the activation of members of the MAPK-family as a key players of their triggered intracellular pathways. Abbreviations: A : amyloid beta 

protein; CREB: cAMP response element binding; ERK1/2: extracellular signal-regulated kinase 1 and 2; GMPc: guanosine cyclic mono-

phosphate; GSK3 : glycogen synthase kinase 3 ; JNK1: c-Jun N-terminal kinase 1; MAPK: the mitogen-activated protein kinase; NF B:

nuclear factor B; NMDA-R: N-methyl-D-aspartic acid receptor; NO: nitric oxide; p75NTR: p75 neurotrophin receptor; PI3K: phosphoi-

nositide 3-kinase; PP2B: protein phosphatase 2B; ROS: reactive oxygen species; STEP: striatal-enriched phosphatase; 7nAChR: 7 nico-

tinic receptors. 



A -Related Biochemical Pathways Mini-Reviews in Medicinal Chemistry, 2009, Vol. 9, No. 6    727

expression of nAChR. For instance, when PC12 cells are 
exposed chronically to A , a down regulation of the mRNA 
codifying for 3, 7 and 2 nAChRs is observed [94]. In 
constrast, when A  is applied to neuroblastoma cell line SK-
N-MC, that overexpress 7nAChR, a rapid binding, inter-
nalization and intracellular accumulation of A  is observed 
[95]. Incubation with the 7nAChR antagonist BTX, as well 
as with the endocytosis inhibitor phenylarsine oxide, pre-
vents such internalization [88, 95]. Accordingly, the intracel-
lular accumulation of A  observed in AD brain, colocalize 
with the presence of 7nAChR [86, 95]. 

 A  interaction with 7nAChRs may eventually lead to 
Tau phosphorylation (Fig. 1). In SK-N-MC cells expressing 

7nAChR, as well as in cortical and hippocampal neurons, 
A  interaction with 7nAChR lead to the activation of ERK 
and c-Jun N-terminal kinase 1 (JNK1) and the subsequent 
phosphorylation of Tau (Fig. 1) [96]. Such A -induced Tau 
phosphorylation was suppressed with the 7nAChR antago-
nists BXT and MLA, as well as with the specific ERK in-
hibitors 5-iodotubercidin and roscovitine, and the JNK1 in-
hibitor SP600125 [96]. In differentiated PC12 cells, A  in-
teraction with 7nAChR increases phosphorylation of Tau 
through the activation of glycogen synthase kinase 3
(GSK3 ), such effect is blocked by the GSK3  inhibitor 
CHIR98023 (Fig. 1). Surprisingly the effect was blocked by 
both an agonist (A-582941) and antagonists (MLA and 
BTX) of 7nAChR [97]. Based on this findings, authors 
suggested that blockade of A -induced Tau phosphorylation 
by both an agonists and antagonists of 7nAChR, may be 
result of a net inhibition of 7nAChR either by the desensiti-
zation of the receptor with agonists or its inhibition with  
antagonists [97]. A  interaction with 7nAChR may also 
affect the function of NMDA-R. Snyder et al. have reported 
that A  can induce a 7nAChR-dependent reduction of 
NMDA-mediated responses. Such effect involves the activa-
tion of protein phosphatase 2B (PP2B) and tyrosine phospha-
tase striatal-enriched phosphatase (STEP) (Fig. 1), since  
A -induced 7nAChR-mediated reduction of NMDA re-
sponses is blocked by the 7nAChR inhibitors BTX and 
MLA, the PP2B inhibitor cyclosporine and a dominant-
negative STEP protein [98]. 

 As mentioned before, whether or not A  acts as an ago-
nist or as an antagonist for 7nAChR remains controversial 
[88-90]. Regarding the agonistic action of A  on 7nAChR 
it has been reported a direct activation of recombinant rat 

7nAChR by A  in Xenopus oocytes [99]. Same activation 
has been observed in native rat 7nAChR in synaptosomal 
preparations isolated from the hippocampus, the striatum and 
the cortex [100]. Accordingly, A  potentiates nicotine-
induced Ca

2+ 
influx in rat basal forebrain neurons [101]. Fur-

thermore, as mentioned, A  application to hippocampal 
slices activates, via 7nAChRs, ERK2 [88]. Finally, in pri-
mary neuronal cultures, blockade of 7nAChR with MLA, 
protects against A -induced neurotoxicity [102]. 

 Despite the evidence suggesting that A  may activate 
7nAChR, there are reports suggesting otherwise. For in-

stance, binding of A  to 7nAChR blocks native 7nAChR 
currents in hippocampal neurons [89, 103]. Same effect is 
observed in 7nAChR currents expressed in Xenopus oo-
cytes [104-106] or in SH-EP1 human epithelial cells [107]. 

Similarly, A  application can impair LTP in vivo and in vitro
by blocking 7nAChR activity [84, 108]. It has also been 
reported that 7nAChR activation either with nicotine and 
the specific agonist 3-(2,4)-dimethoxybenzylidene (DMXB) 
provide protection against A -induced neurotoxicity [109, 
110]. The neuroprotective effect of nicotine can be block by 
the nAChR antagonist hexamethonium and mecamylamine 
as well as the selective 7nAChR antagonist BTX [91, 109]. 
Furthermore, it has been reported that A -induced cell death 
in SK-N-MC cell line, can be prevented either by nicotine or 
epibatidine, a potent 7nAChR agonist [86]. The neuropro-
tective effect of nicotine against A -induced neurotoxicity 
can also be blocked by the PI3K inhibitors LY294002 and 
wortmannin as well as a Src-family inhibitor PP2, suggesting 
that these kinases are involve in the neuroprotective actions 
of nicotine [91, 93]. It has been proposed that, at least in the 
neuronal cell line PC12, nicotine competes with A  for the 
binding to 7nAChR and therefore prevents the A -
induction of caspase 3 and apoptosis [92]. This effect ap-
pears to be mediated by 7nAChR, because the protection is 
blocked by BTX and is mimicked by the 7nAChR agonist 
TC-1698 [92, 111, 112]. Interestingly, treatment with nico-
tine for ten days in the APPsw mice model reduced insoluble 
amyloid by 80% in the brain cortex of 9 month-old mice 
[113]. This effect is mediated, at least in part, by the 

7nAChR as shown by using MLA [113]. Overall, despite 
the controversy regarding the agonistic or antagonistic ac-
tions of A  on 7nAChR, the evidence reviewed, clearly 
point toward 7nAChR as a very likely candidate for phar-
macological manipulation in order to overcome A -induced 
effects. 

The evidence just reviewed support the notion that nico-
tinic receptors may constitute a promising target to treat AD. 
It is well know that smokers have less accumulation of A
[114] and a reduced risk to develop AD [115, 116]. Prelimi-
nar clinical studies have shown that transdermal application 
of nicotine improves memory and attention in AD patients 
[117, 118]. Similar improvements have been achieved 
through the administration of the nicotinic receptor agonist 
ABT-418 [119]. Furthermore, in AD transgenic models, it 
has been found that nicotine administration reduces A  ac-
cumulation [120] and improves the memory deficit observed 
in these animals [121]. Interestingly, it has been shown that 
immunization against 7 receptors improves the memory 
deficit observed in an AD animal model [122]. 

p75NTR 

 p75 neurotrophin receptor (p75NTR) is a transmembrane 
protein with a structure similar to the tumor necrosis factor 
receptor and CD40 [123]. A  can bind p75NTR (Kd = 23 
nM) with a lower affinity than its natural ligand nerve 
growth factor (NGF) (Kd = 4-7 nM) in NIH 3T3 cells as well 
as rat cortical neurons (Fig. 1) [124]. A -p75NTR complex 
can contain either a sole p75NTR receptor (80 kDa) or a 
receptor complex of 230 kDa, proposed to be a trimer of 
p75NTR [123, 125]. A variety of different-length A  pep-
tides interact with and activate p75NTR signaling (Fig. 1); 
including aggregated A  1–40 [123-125], soluble oligomeric 
and aggregated A  1–42 [126-130] and oligomeric and ag-
gregated A  25–35 [123, 126, 131]. Binding of A  to 
p75NTR leads to cell death trough the interaction of A  with 
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the receptor’s amino-terminal domain and the activation of a 
neurotoxic function of the receptor localized in its carboxyl-
terminal domain [132] The specificity of this interaction is 
revealed by the fact that A  induces cell death in NIH 3T3 
cells sobreexpressing p75NTR but has no effect on non-
transfected cells [124]. Similar data was obtained using hu-
man neural crest-derived melanocytes [124]. These findings 
are confirmed by in vivo experiments showing that A -
induced neurodegeneration of basal forebrain cholinergic 
neurons is not observed in p75NTR-deficient mice [133]. 
Interestingly, basal forebrain cholinergic neurons have the 
highest levels of p75NTR in the brain and are one of the 
most affected neurons in AD [134]. A  binding to p75NTR 
triggers activation of the downstream signalling molecules 
such as JNK, Gi/o-proteins, NF B and PI3K (Fig. 1) [135]. 
The induction of cell death upon interaction of p75NTR with 
A  is mediated by the activation of caspases-8 and -3 and the 
production of ROS intermediates (Fig. 1). Benzyloxycar-
bonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD-
FMK), a non-selective caspases inhibitor, and Z-IETD-FMK, 
a specific caspase 8 inhibitor, prevented such cell death 
[132]. As mentioned A -induced p75NTR-mediated cell 
death, involves the activation of JNK and p38, as well as the 
mitogen-activated protein kinases MKK3, 4 and 6 and p53 
activity (Fig. 1) [126, 131, 132]. The activation of these pro-
teins was found to require the death domain region of 
p75NTR [131, 132]. On F11-neuron hybrid cells, transfected 
with p75NTR, A -induced p75NTR-mediated cell death, 
was mediated by Go (Fig. 1). This was demonstrated by us-
ing the Gi/o inhibitor pertussis toxin (PTX) [126]. In this 
case, JNK and caspases 3,7 and 9 are also involved in A -
induced p75NTR-mediated cell death (Fig. 1), since the in-
hibitor of caspases 3/7 Ac-DEVD-CHO (DEVD), the inhibi-
tor of caspase 9 Ac-LEHD-CHO (LEHD) and the JNK in-
hibitor SP600125, prevented cell death [126]. On human 
neuroblastoma cell line, the transcriptional factor NFkB is 
also activated during cell death promoted by A  (Fig. 1)
[123]. By blocking the interaction A -p75NTR with NGF or 
the inhibition of NFkB activation by curcumin or NFkB 
SN50, respectively, A -induced cell death was prevented 
[123]. Low concentrations of A  can activate Ras and 
ERK1/2 via p75NFR, in MDCK and RN22 cells as well as in 
cerebellar neurons (Fig. 1) [129]. Interestingly, using a neu-
roblastoma cell line devoid of neurotrophin receptors and 
engineered to express either a full-length or a death domain 
(DD)-truncated form of p75NTR, Constatntini et al., 2005 
demonstrated that A  activates p38 and JNK and induces 
NFkB translocation through its carboxyl-terminal domain 
[131]. In a recent report is has been shown that blocking 
binding of A  to p75NTR, with an antagonist peptide (se-
quence CATDIKGAEC), produced a reduction in A -induced 
neurotoxicity in NIH-3T3 cells and cortical neurons [136], as 
well as the neuroinflammatory response induced by A  in 
B57BL/6 mice [137]. Altogether, the evidence shows that 
p75NTR and its associated intracellular pathways, constitute 
very interesting candidates for the development of pharma-
cological strategies against A  neuronal network disruption.  

Integrin Signal Pathway 

 Integrins are members of a superfamily of membrane 
glycoproteins that are well expressed in all cell types [138]. 

Such glycoproteins form heterodimers composed of  and 
subunits that act as receptors for extracellular matrix proteins 
and counterreceptors on adjacent cells [138]. Integrin-medi-
ated cell to cell interactions are necessary for cell survival, 
since loss of this function can cause apoptosis [139]. Fur-
thermore, in the central nervous system, integrins are widely 
expressed in synapses and dendritic spines and can regulate 
synaptic transmission and plasticity [27, 138, 140-142]. For 
instance, integrins regulate the memory-related plastic mecha-
nism called long-term potentiation (LTP) [139]. Integrins 
contain the Arg-Gly-Asp attachment site that allows their 
interactions with other proteins during cell adhesion process 
[143]. Interestingly for this review, it is known that integrins 
bind A  in an analog domain composed of the aminoacid 
sequence Arg-His-Asp-Ser (Fig. 2) [144, 145]. Therefore, 
integrins and the intracellular pathways that can be evoked 
upon their activation have been related to AD (Fig. 2). 

 Integrins co-localize with senile plaques and dystrophic 
neurites in AD patients, as well as in transgenic animal mod-
els of this disease [146-149]. Several are the consequences of 
A  binding to integrins (Fig. 1); for instance, binding of A
to the integrin heterodimer 1 1, activate the MAPKK-
ERK2 pathway and induces neurite degeneration and cell 
death in hippocampal neurons (Fig. 2) [150], such effects 
were blocked by the general integrin inhibitor echistatin, as 
well as by antibodies against both 1 and 1 integrins [150]. 
When A bind to 1 and 1 integrins, produce their inter-
nalization, and secondarily lead to apoptosis in SH-SY5Y 
cells [151]. In the same report, it was shown that treatment 
with integrin-binding proteins, such as fibronectin, laminin 
and collagen, protected against A -induced apoptosis, and 
treatment with antibodies against both 1 and 1 integrins 
enhanced A -induced neurotoxicity [151]. The later finding, 
was explained by suggesting that A  binding to integrins 
may disrupt their normal interaction with the extracellular 
matrix, which then triggers apoptosis, at least in SH-SY5Y 
cells. Another study, using the same cell line, showed that 
A  binds to 1 integrin and activates focal adhesion kinase 
(FAK) and ERK1/2 (possibly through a Fyn-dependent 
mechanism), inducing the reactivation of the cell cycle and 
ultimately cell death (Fig. 2) [152]. The involvement of Fyn 
in this pathway was suggested by the inhibition of both proc-
esses with the Fyn inhibitor PP2, whereas the participation of 
FAK was revealed by its knock-down with an specific 
siRNA [152]. Other reports, using the SH-SY5Y cell line 
along with B103 cell and cortical neurons, have shown that 
A  increased the phosphorylation levels of FAK (Fig. 2)
[149, 153, 154]. It is important to mention that FAK is a 
tyrosine kinase [139, 155], closely related to Fyn kinase 
[156-159]. FAK and Fyn, which are overexpressed in AD 
brains [160, 161], participate along with PI3K, in A -
induced tyro-sin phosphorylation of microtubule-associated 
protein 2c (MAP2c) and TAU [154] (see Fig. 2). We have 
recently shown that A -induced hippocampal network dys-
function is precluded in Fyn-knockout mice suggesting that 
Fyn kinase play an important role in A -induced pathology 
[30]. 

 The disruption of normal integrin function by A  may 
lead neurons to the reactivation of cell cycle and ultimately 
death [152]. This might explain why there is a reexpresion in 
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the brain of AD patients of proteins related with the cell cy-
cle like cell division cycle 2 (cdc2), cyclin B1, cyclin-
dependent kinase 4 (cdk4), cyclin D, p16 and cyclin E, [162-
166], as well as in the brain of AD transgenic mice [167]. As 
known, most normal neurons do not express cell cycle-
related proteins, due to the fact that they are arrested in Go, 
thus A -induced reactivation of neuronal cell cycle destabi-
lize their neuronal function and lead them to dead [152].  

 An alternative pathway activated by the interaction be-
tween A  and v 1 integrins, is the activation of proline-rich 
tyrosine kinase 2 (Pyk2) (Fig. 2) [149, 168-170]. Such acti-
vation of Pyk2 then activates the adaptors proteins Tks5/ 
FISH or Paxillin, which are involved in neuronal dysfunction 
and neurotoxicity [149, 168-170]. Interestingly, endogenous 
ligands of integrins, such as fibronectin and collagen, pre-
vent the neurotoxic effects just described [168]. Finally, a 
recent report has shown that the reduction of LTP induced by 
soluble A  is blocked by antibodies against v integrin both 
in vivo and in vitro [27]. Overall, the information reviewed 
shows that integrins are a major target of A . The intracellu-
lar pathways triggered by this interaction may lead to both 
neuronal dysfunction and death, and therefore this molecular 
system constitutes a potential therapeutic target against A -
induced neuronal network dysfunction and possibly against 
AD. 

Microglial Receptors (SR-A, FPRL1 and CD36/a6b1/ 

CD47)

 A hallmark in the AD disease is a potent inflammation 
response promoted by activated microglial cells [171]. It has 
been reported that microglial cells surround senile plaques 
[172, 173] and that A  promotes cytokines production by 
those cells [174-176]. Furthermore microglial cells are not 
just activated by A  but phagocytes it [177-179]. Overall, 
these results indicate that microglial cells represent a key 
factor for understanding AD and for providing with thera-
peutic target against the disease. Several are the putative 
receptors that may be involved in A -induced activation of 
microglial cells (Fig. 3), including receptor for advanced 
glycation end products (RAGE), tumor necrosis factor recep-
tor (TNF-R) as well as several microglial receptors such as 
scavenger receptor A (SR-A), formyl peptide receptor-like 1 
(FPRL1) and a complex called CD36/ 6 1/CD47 (Fig. 3). 
We will review the interaction of A  with these four recep-
tors next. 

 It is well known that senile plaques are surrounded by 
microglial cells that express the SR-A (Fig. 3) [180-182]. 
SR-A was the first receptor shown to participate in binding 
and internalization of A  by microglial cells (Fig. 3) [183, 
184]. Subsequently, it has been reported that microglia from 
SR-A knockout mice bind A  less efficiently [185, 186]. 
Using human monocytes, N9 microglia cell line and primary 
rat microglial cells, it was found that A  binds to SR-A 
[183]. Upon binding to SR-A, A  inhibits cell migration 
(chemotaxis) and also promotes ROS production in those 
cells [183]. Also it has been reported that microglial cells 
internalize A  in a SR-A-dependent manner [184]. Similarly, 
the type BI SR receptor (SR-BI) also binds and internalize 
A  and induce ROS production in microglial cultures (Fig. 
3) [186]. 

 The FPRL1, a Gi protein-coupled receptor involved in 
immune response [187, 188], is highly expressed by inflam-
matory cells infiltrating senile plaques in brain tissues from 
AD patients [189, 190]. A  binds and activates human FPRL1 
(Fig. 3) as well as its mouse counterpart FPR2, which acti-
vates microglial cells, promoting chemotaxis [190, 191]. 
Such effect can be blocked by desensitizing FPRL1 with its 
agonist fMLF [191]. When FPRL1 is sobreexpresed in 
HEK293 cells, A  activation of this receptor induces cal-
cium influx and chemotaxis [190, 191]. A  can also be inter-
nalized upon binding to FPRL1, such internalization is in-
volved in the intracellular aggregation of A  into microglia 
[187, 192]. Recently it has been shown that the FPRL1-
mediated A  internalization is a phospholipase D (PLD)-
dependent processes (Fig. 3), which can be observed either 
in microglia or astrocites [193]. Such process can be reverted 
using the FPRL1 antagonist WRW4, as well as PTX [194].  

 The cluster of differentiation 14 (CD14) is the lipopoly-
saccharide (LPS) receptor [195], which is localized in mi-
croglial cells and seem to be another putative receptor for A
(Fig. 3). For instance, coimmunoprecipitation of A  with 
CD14 was confirmed with binding assays, which show that 
A  binds CD14 with high affinity (Kd = 1 nM) [196]. 
Moreover, flow cytometry, confocal microscopy and two-
photon fluorescence lifetime imaging (FLIM), combined 

Fig. (2). A  activates integrin-mediated pathways. A  can bind 

and activate different types of integrins, including 1 1, 2 1 and 

v 1. Such activation induces several intracellular pathways that 

include as key players Pyk2, as a convergence kinase, and tyrosine 

kinases such as FAK and Fyn. Abbreviations: A : amyloid beta 

protein; cdk5: cyclin-dependent kinase 5; ERK: extracellular sig-

nal-regulated kinase; FAK: focal adhesion kinase; GSK3 : glyco-

gen synthase kinase 3 ; PI3K: phosphoinositide 3-kinase; Pyk2:

proline-rich tyrosine kinase 2; Tks/FISH: adapter protein. 
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with fluorescence resonance energy transfer (FRET), con-
firmed a direct interaction between A  and CD14 in CHO 
cells transfected with human CD14 receptor [197]. Interest-
ingly, the A -induced cytokine secretion (IL-6 or TNF- ) is 
not observed in microglial cells obtained from CD14 knock-
out mice [196]. As mentioned for the other microglial recep-
tors, binding of A  to CD14 induces its internalization; 
which is dramatically reduced in microglial cells obtained 
from CD14 knockout mice [197].  

 At the microglial cell membrane, A  also interacts with a 
receptor complex composed of the B class scavenger recep-
tor (CD36), 6 1-integrin and CD47, an integrin-associated 
protein (Fig. 3) [198-200]. A  activation of this receptor 
complex induces tyrosine phosphorylation of several pro-
teins; it also induces activation of Fyn kinase, ERK and 
eventually induces cytokine release (Fig. 3) [198]. Inhibition 
of such receptor complex, with the scavenger receptor an-
tagonist fucoidan, the CD47 inhibitor 4N1K, as well as with 
inhibitory peptides for CD36 and 6 1-integrin, reverted the 
effects just described [198]. A  interaction with this receptor 
complex also induces A  internalization in the immortalized 
murine microglia cell line BV-2 and primary microglia cul-
tures [199]. Accordingly, application of some antagonists for 
several members of such receptor complex reduced A  in-
ternalization [199]. Such A  internalization seems to be me-
diated by the activation of Syk kinase (a member of Src-

family tyrosin kinases) as well as by PI3K (Fig. 3), since the 
application of the specific Syk inhibitor picetanol, the Src 
inhibitor PP2 and the PI3K inhibitor LY294002, blocked A
internalization [199]. A recent report has suggested that tyro-
sine kinase Vav is involved in the signaling pathway trig-
gered by A -induced activation of the receptor complex in 
human THP-1 monocytes [200]. This suggestion is based on 
the fact that A -induced activation of the receptor complex 
in human THP-1 monocytes produces the activation of Lyn 
and Syk kinases in a Vav-dependent manner [200-202].  

RAGE 

 The receptor for advanced glycation end products (RAGE) 
is a member of the immunoglobulin superfamily, composed 
of three extracellular Ig-like domains (Vd, C1d, C2d), a single 
transmembrane domain, and a short cytoplasmic tail [203, 
204]. Interestingly for this review, RAGE is overexpressed 
in the brain of AD patients [205, 206] and constitutes a 
membrane binding site for A  (Kd = 50-100 nM) at neurons, 
microglial cells, as well as endothelial cells [205-209]. In 
those cells, A -induced RAGE activation induces cell death 
[205, 210]. Accordingly, an antibody against RAGE prevents 
A -induced cell death on SHSY-5Y cells sobreexpressing 
RAGE and rat cortical neurons stimulated with A  [203]. 
The receptor domains implicated in the neurotoxic effect 
were the Vd for A  oligomeric forms and C1d for A  fibrillar 

Fig. (3). Main receptors and intracellular pathways activated by A  in microglia. Most of the pro-inflammatory response induced by 

A , involves microglial activation. This event is triggered by binding of A  to several types of receptors including scavenger receptors and 

“cluster of differentiation” (CD) receptors. In all cases, A  activation of such receptors leads to phagocytosis and/or cytokines release. It is 

important to mention that tyrosine kinases play a major role in the transduction of the receptor complex form by CD36 and 47 associated to 

integrin 2 1. Abbreviations: A : amyloid beta protein; CD14: cluster of differentiation 14; CD36: cluster of differentiation 36; CD47: clus-

ter of differentiation 47; ERK1/2: extracellular signal-regulated kinase 1 and 2; FPRL1: formyl peptide receptor-like 1; IL-6: interleukin 6; 

PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species. SR-A: scavenger receptor A; SR-BI: BI SR receptor; TNF : tumor necro-

sis factor .
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forms [203]. Regarding intracellular signaling, interaction of 
A  with RAGE, in SH-SY5Y cells, induces ERK1/2 and Akt 
phosphorylation through MAPK/ERK kinase 1 (MEK1) and 
PI3K respectively, since the MEK1 inhibitor PD98059, and 
the PI3K-inhibitor LY294002, abolished such activation 
[211]. A  interaction with RAGE also induces activation of 
IkBa and the NFkB translocation inhibitor SN50 [211]. 
However the activation of the two pathways just described 
seems not to be involved in A -induced RAGE-mediated 
neurotoxicity. In contrast the JNK-inhibitor I and SB203580, 
a p38 inhibitor, reduced A -induced RAGE-mediated neuro-
toxicity [211].  

 A -induced RAGE activation in neuroblastoma cells 
increase the levels of macrophage colony-stimulating factor 
(M-CSF) and vascular cell adhesion molecule-1 (VCAM-1) 
through the activation of NFkB [212]. Interestingly M-CSF 
as well as VCAM-1 expression is increased in the brain of 
AD patients [212, 213] as well as the brain of AD mouse 
models [214]. Interestingly, M-CSF can activated microglia 
cells and enhance A  induced interleukin-1, interleukin-6 
and NO production by such cells [215]. Microglial cells iso-
lated from AD patients can release M-CSF upon A  activa-
tion of RAGE, since such release can be inhibited with anti-
bodies anti-RAGE [206]. M-CSF is able to induce expres-
sion of RAGE which creates a positive loop that could favors 
the inflammatory process in AD [206].  

 A transgenic AD mouse model which overexpresses mur-
ine amyloid precursor protein (mAPP) and RAGE, displays 
functional abnormalities in spatial learning and memory, 
accompanied by promoting synaptic dysfunction and LTP 
reduction, as well as a progressive density decrease of cho-
linergic fibers and synapses, long before the same changes 
are expressed in mAPP transgenic mice [216]. An increase 
of NFkB traslocation, microgliosis and astrocitocis surround-
ing senile plaques, phosphorilated forms of cAMP response 
element binding (CREB), p38, ERK1/2, and calcium/calmo-
dulin-dependent protein kinase II (CAMKII), was detected in 
the mAPP/RAGE mouse [216]. In contrast a transgenic 
mouse overexpressing mAPP along with a dominant-negative 
RAGE, shows a reduction in the alterations in spatial learn-
ing and memory, well as a decrease in neuropathologic 
changes, compared with the mAPP transgenic mice [216].  

 Despite many evidence that RAGE could mediate A -
induced neurodegeneration, in a report using PC12 cells, 
B12 cells or rat primary cortical neurons, it was shown that 
neurotoxicity by A  was not affected when RAGE was inac-
tivated with trypsin [217]. 

TNF-R1 

 Tumor necrosis factor (TNF, cachexin or cachectin and 
formally known as tumor necrosis factor- , TNF ) is a cyto-
kine involved in inflammation. Both TNF  and its receptor 
(TNF-R1) are increase in brain AD patients [218-222]. AD 
patients carrying the TNF  -308 A/G polymorphism and the 
apolipoproteinE (APOE) 4 allele had a lower mean age of 
AD onset [223]. AD brain microglia produce 1.5 times more 
TNF  than age with matched controls [224]. A  binds and 
activates TNF-R1 high affinity (Kd = 0.42 nM). A -induced 
activation of TNF-R1 promotes neuronal death by inducing 
the activation of NFkB and by altering the expression of the 

apoptotic protease-activating factor (Apaf-1) [220]. Such 
A -induced TNF-R1-mediated apoptosis, along with the 
intracellular mechanisms just mentioned, is absent in a TNF-
R1 knock out mice [220]. Recently it has been reported that 
the spatial learning alteration and the reduction of nerve ter-
minals, observed in a mouse model of AD, are dependent on 
TNF-R1 [225]. Furthermore, it has been shown that the A -
induced inhibition of hippocampus LTP occurs as a conse-
quence of release of endogenous TNF and the subsequence 
activation of TNF-R1 mediated by A  oligomers [27]. Ac-
cordingly, A -induced inhibition of hippocampus LTP is not 
observed in a mouse knock out for TNF-R1 [226]. Interest-
ingly a prospective pilot study of 15 AD patients given a 
TNF  antagonist, etanercept, for 6 months showed signifi-
cant improvement in 3 cognitive tests instead of the decline 
seen for untreated patients [227]. Furthermore, deletion of 
TNFR1 in APP23 transgenic mice prevents learning and 
memory deficits [228]. 

Insulin Receptor 

 A  can also competitively bind and coimmunoprecipitate 
with insulin receptor (IR; Kd 8-25 mM); inhibiting receptor 
autophosphorylation and therefore blocking its signaling 
pathway [229-231]. A  also blocks IR-induced activation of 
ERK, CaMKII and Akt and these effects might be related to 
A -induced inhibition of LTP, since the the A -induced re-
duction in the activation of ERK, CaMKII and Akt is mim-
icked by the the IR antagonist AG1024 and A -induced in-
hibition of LTP can partially be reverted by insulin [230]. A
can also induce the redistribution of IR, since A  application 
to hippocampal cultures produces a rapid and substantial loss 
of IR at dendrites surface, whereas produces an increased 
receptor immunoreactivity in the cell body [229]. Concomi-
tantly with receptor redistribution, A  increases IR-mediated 
phosphorylation of Akt at serine473. The later is a molecular 
event related to neurodegeneration and insulin resistance 
[229]. 

INTRACELLULAR PATHWAYS EVOKED BY A
WITH NOT IDENTIFIED MEMBRANE RECEPTOR 

(“ORPHAN” INTRACELLULAR PATHWAYS) 

 So far, we have reviewed several putative A  receptors 
and the intracellular pathways associated to them, however a 
careful review of the literature, shows a great amount of re-
ports indicating that A  modulates several elements of dif-
ferent intracellular pathways, however the membrane recep-
tor involved in such modulation remains undetermined [232-
235]. However, due to the fact that several of those enzymes 
seem to be strongly related to the A -induced effect and may 
constitute promising therapeutic targets against A -induced 
effects, we want to mention some of them.  

 As already mentioned, several kinases known to phos-
phorylate Tau protein are activated by A  on neurons, in-
cluding GSK3  and Cyclin-dependent kinase 5 (cdk5) [232-
235]. A  also induce the activation of MAPKs in hippocam-
pal and cortical neurons, as well as PC12 and SH-SY5Y hu-
man neuroblastoma cells, producing neurotoxicity [67, 236-
238]. On THP-1 monocytic cell line, A  can activate ERK1/2 
kinases [201]. Pretreatment with PP1 (the Src-family tyrosin 
kinase inhibitor) and piceatannol (a Syk kinase inhibitor) 
inhibited such ERK activation. Furthermore the calcium 
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ATPase inhibitors 2,5-ditert-butylhydroquinone (DTBHQ) 
and thapsigargin, the ryanodine receptor inhibitor dantrolene, 
as well as the calcium chelator 1,2-bis(o-aminophenoxy) 
ethane-N,N,N',N'-tetraacetic acid (BAPTA), also decrease 
such A -induced ERK activation suggesting that Lyn, Syk 
and intracellular store-mediated calcium rising are activated 
upon A  application to these cells [201]. The protein kinase 
C (PKC) inhibitor Go6976 (specific for calcium dependent 
PKC isoforms) also prevents A -induced ERK activation. 
Same effect is achieved inhibiting Pyk2 and Lyn with the 
broad Src-like inhibitor PP1 [201]. A Pyk2 target called pax-
illin is also activated by A  in THP-1 monocites; such acti-
vation is blocked by the PKC inhibitor Go6976, the Src-like 
inhibitor PP1 and the calcium ATPase inhibitor DTBHQ 
[201].  

 It has been reported that A  induces the expression, in a 
PKC-dependent manner, of cyclooxygenase 2 (COX-2) 
which subsequent increases prostaglandin E2 release in pri-
mary midbrain astrocytes, such effect of A  can be blocked 
by the PKC inhibitor GF109203X [239]. Related to this find-
ing, it has also being reported that A  can induce cyclooxy-
genase 1 activation and prostaglandin D2 production [240]. 

 Intracerebroventricular injection of A  induces an in-
flammatory response in response the hippocampal CA1 area, 
characterized by astrocytes infiltration and the overexpres-
sion of interleukin-1b, caspase 3 and the pro-apoptotic pro-
tein FasL, as well as the activation of p38 MAPK [241]. In 
contrast, A  injection reduces the expression of several sur-
viving-related proteins such as ERK1/2 and Akt/PKB [241]. 
Sodium ferulate (SF), which is extracted from Scrophularia 
frutescens, blocks the A -induced increase in the the apop-
totic pathway (p38MAPK, Caspase 3 and FasL) and the de-
crease of the survival pathway (ERK1/2 and Akt/PKB) 
[242]. Using the same experimental paradigm, intracere-
broventricular injection of A  activates MKK3/MKK6, p38 
MAPK and promotes an increase in IL-1b levels, while re-
duces activation of MAPKAPK-2 and its downstream target 
Hsp27 [243]. SF and the p38MAPK inhibitor SB203580 
reverted such A -induced effects [243]. 

 A  application to retinal pericytes results in arachidonic 
acid (AA) production, such effect is reduced by applying the 
MEK inhibitor PD98059, the p38 MAPK inhibitor SB203580 
and the PKC inhibitor GF109203X [176]. Same inhibitors 
also prevented A -induced phophorylation and overexpres-
sion of phospholipase A2 [176]. 

 As already mentioned, GSK3  is a major player in A -
induced neurotoxicity. For instance, the A -induced neuro-
toxicity observed in primary cultures of embryonic rat hip-
pocampal neurons is reduced when the culture is pretreated 
with a GSK3  antisense oligonucleotide [232]. Furthermore, 
A -induced GSK3 -mediated neurotoxicity and Tau phos-
phorilation, seem to involve the inhibition of PI3K by A
[244]. In this experiment PI3K activity was determined by 
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production, 
and a decrease in PIP3 levels was observed upon A  applica-
tion [244]. Finally, inhibiting GSK3  either with lithium or 
with the GSK3  inhibitor VIII prevents A -induced Tau 
phosphorylation and neuronal death [234, 240]. These evi-
dences are in agreement with clinical observations in AD 

patients. First of all, there is increased GSK3  activity in the 
frontal cortex in AD patients, as evidenced by immunoblot-
ting for GSK3 phosphorylated at Tyr216 [245]. Furthermore, 
GSK3  expression is up-regulated in the hippocampus of 
AD patients [246] and in post-synaptosomal supernatants 
derived from AD brain [247]. GSK3  expression is also up-
regulated in circulating peripheral lymphocytes in both AD 
and in mild cognitive impairment patients [248]. It has also 
been reported that a polymorphism in the GSK3  promoter 
as a risk factor for late onset AD [249]. Furthermore it has 
been observed that GSK3  co-localize with dystrophic neu-
rites and neurofibrillar tangles [233, 247, 250, 251] and that 
active GSK3  is observed in neurons with pre-tangle 
changes [252]. 

 Calcium/calmodulin regulated phosphatase or calcineu-
rin, seem to be involved in A -induced effects. For instance, 
A -induced reduction of late-phase LTP in the hippocampal 
dentate gyrus involves A -induced calcineurin activation 
[253]. Furthermore A -induced neurotoxicity also involved 
the activation of calcineurin in cortical neuron primary cul-
tures [254]. As known, calcineurin dephosphorylates and 
activates BAD, a proapoptotic member of Bcl-2 family, 
which triggers cytochrome c release and caspase 3 activation 
[255, 256]. Blocking calcineurin activity with FK506 or cy-
closporine prevents neurotoxicity [253-256]. Interestingly in 
a transgenic mouse AD model, calcineurin activity is ele-
vated and, on top of that, A  induces a further activation of 
calcineurin activity which then dephosphorylates and acti-
vates CREB, promoting cell death [257]. 

 Finally A -induced effects also seem to be dependent on 
the activation of a protein kinase called Fyn, a Src family 
tyrosine kinese member, which is widely expressed on the 
nervous system [157-159] and is increased in the brain of 
AD patients [160, 161]. Interestingly the described A -
induced LTP disruption and neurotoxicity is not observed in 
Fyn KO mice [21]. Furthermore the synaptotoxicity and 
cognitive impairments in a AD mouse model of AD seem to 
be mediated by Fyn [258]. As already mentioned, we have 
recently shown that A -induced hippocampal network dys-
function is precluded in Fyn-knockout mice suggesting that 
Fyn kinase play an important role in A -induced pathology 
[30].  

CONCLUDING REMARKS 

 The evidence reviewed show that A  interacts with a 
wide variety of membrane receptors and this interaction pro-
duces a complex response, involving several cell types, that 
eventually lead to neuronal network dysfunction, which then 
may be responsible for the early cognitive deficits observed 
in AD patients. The review of these receptors, along with the 
intracellular pathways associated with them, provide with 
promising therapeutic targets against A -induced brain dys-
function and cognitive decline. However, it is important to 
identify which of these molecules, when pharmacologically 
activated or inhibited in order to overcome A -induced ef-
fects, are associated with less side effects. It is important to 
take into account that the receptors and the intracellular 
pathways mentioned in this review are involved in several 
neuronal, and non-neuronal processes, which are important 
for normal brain function and that its pharmacological altera-
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tion may be more harmful that the A -induced effect. Thus 
the challenge for the coming years is to carefully dissect the 
A -mediated molecular mechanisms to identify those thera-
peutic targets that may inhibit the A -mediated neuronal 
network dysfunction without affecting normal brain function.  

ABBREVIATIONS 

AA = Arachidonic acid 

AD = Alzheimer's disease 

Apaf-1 = Apoptotic protease-activating factor 

APOE = apolipoproteine 

APP = Amyloid precursor protein 

APV = 2-amino-phosphonovaleric acid 

AZD-103 = Scyllo-inositol 

A  = Amyloid beta protein 

BAPTA = 1,2-bis(o-aminophenoxy)ethane-
N,N,N',N'-tetraacetic acid 

BTX = -bungarotoxin 

CAMKII = Calcium/calmodulin-dependent protein 
kinase II 

CD14 = Cluster of differentiation 14 

CD36 = Cluster of differentiation 36 

CD47 = Cluster of differentiation 47 

cdc2 = Cell division cycle 2, also referred to as 
cyclin-dependent kinase 1 

cdk4 = Cyclin-dependent kinase 4 

cdk5 = Cyclin-dependent kinase 5 

COX-2 = Cyclooxygenase 2 

CPP = 3-(2-carboxypiperazin-4-yl)propyl-1-
phosphonic acid 

CREB = cAMP response element binding 

DEVD = Ac-DEVD-CHO 

DMXB = 3-(2,4)-dimethoxybenzylidene 

DTBHQ = 2,5-ditert-butylhydroquinone 

ERK = Extracellular signal-regulated kinase 

FAK = Focal adhesion kinase 

FLIM = Fluorescence lifetime imaging 

FPRL1 = Formyl peptide receptor-like 1 

FRET = Fluorescence resonance energy transfer 

GMPc = Guanosine cyclic monophosphate 

GSK3  = Glycogen synthase kinase 3

IR = Insulin receptor 

JNK1 = c-Jun N-terminal kinase 1 

LEHD = Ac-LEHD-CHO 

LPS = Lipopolysaccharide 

LTP = Long term potentiation 

MAP2c = Microtubule-associated protein 2c 

MAPK = The mitogen-activated protein kinase 

mAPP = Murine amyloid precursor protein 

M-CSF = Macrophage colony-stimulating factor 

MEK1 = MAPK/ERK kinase 1 

MK-801 = 5-methyl-10,11-dihydro-5H-
dibenzo[a,d]cyclohepten-5,10-imine 

MLA = Methyllycaconitine 

NF B = Nuclear factor B

NGF = Nerve growth factor 

NMDA-R = N-methyl-D-aspartic acid receptor 

NO = Nitric oxide 

p75NTR = p75 neurotrophin receptor 

PI3K = Phosphoinositide 3-kinase 

PIP3 = Phosphatidylinositol (3,4,5)-

trisphosphate 

PKC = Protein kinase C 

PLD = Phospholipase D 

PP2 = 4-Amino-5-(4-chlorophenyl)-7-(t-
butyl)pyrazolo[3,4-d]pyrimidine 

PP2B = Protein phosphatase 2B 

PTX = Pertussis toxin 

Pyk2 = Proline-rich tyrosine kinase 2 

RAGE = Receptor for advanced glycation end 
products 

ROS = Reactive oxygen species 

SF = Sodium ferulate 

siRNA = Small interfering RNA 

SR-A = Scavenger receptor A 

SR-BI = BI SR receptor 

STEP = Striatal-enriched phosphatase 

TNFR1 = TNF receptor 1 

TNF  = Tumor necrosis factor-

VCAM-1 = Vascular cell adhesion molecule-1 

Z-VAD-FMK = Benzyloxycarbonyl-Val-Ala-Asp (OMe) 

fluoromethylketone 

7nChRs = 7 nicotinic receptors 
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